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Outline and Talk Agenda

• Brief history of ASR and key messages

• State-of-the-art top-down ASR: blackbox, data-driven
➢ Current capabilities and limitations: nice but not good enough

• What more can be done? What’s next?
➢ Automatic Speech Attribute Transcription (ASAT)

➢ Bottom-up attribute detection and knowledge Integration

• Recent ASAT effort: language-universal speech units
➢ Attribute-based visible speech and multilingual ASR, etc.

• Recent ASR and DNN efforts
➢ Large pre-train models and tools for multilingual ASR

➢ Hopfield and Hinton just won 2024 Nobel Prize (Physics)

• Conclusion and future work – everyone can contribute
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A Brief History of Speech Recognition
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Time40 years 

of HMM

2. Mathematical formalization,

Global optimization, HMM, ANN,

Automatic learning from data
1. Speech science,

Handcrafted rules,

Local optimization
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4. Back to basics: 

speech science, 

signal processing, 

information 

extraction ???

Supra-Human Performance (IBM Challenge) 

2025+

Human 

Capabilities 

1970-

Paradigm 

Shift

15 years 

of DNN

HMM

Speech Science

3. End-to-end, 

DNN, Big Data

DNN

State-of-the-art ASR Capabilities (1/3)

• Use statistical pattern recognition approaches
• Rigorous mathematical formulation: e.g., HMM, DP and ANN

• Acoustic models with tens of million of parameters

• Language models with hundred of million of parameters

• Same for all spoken languages: little linguistic knowledge used
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State-of-the-art ASR Capabilities (2/3)

• Work well if a task follows some specified training protocols
➢ Speaker: speaking rate, accent, age, gender, emotion state, etc.

➢ Speaking environment: channel, background noise, etc.

➢ Acoustics and signal acquisition devices, push-to-talk, etc.

➢ Domain knowledge: vocabulary, syntax, semantics, etc.
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• Achieve high accuracies for resource-rich languages
➢ English, Mandarin, Arabic, and many others

• Extend ASR learning methodology to other communities, 
e.g., machine translation, text understanding, bioinformatics

• Deploy many data-driven modeling tools for HMM, ANN, LM
➢ But do they lower entry barriers to ASR and advance technologies?

• Use HMM to model phones, words and sentences

State-of-the-art ASR Capabilities (3/3)

• From HMM to deep neural network (DNN, Hinton)
➢ Combining frontend feature extraction and backend scoring

➢ Maintaining finite-state network (FSN) search

➢ Leveraging on huge amounts of training speech and text, and 
resulting in large pre-trained models, e.g., Whisper, Nemo, etc.

➢ Offering flexible DNN architectures and billions of parameters
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Speech
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• Use end-to-end modeling (DNN) and FSN decoding

• Work well for resource-rich languages achieving low WERs
➢ Fine-tuning to  obtain models for resource-limited languages

5

6



4

7 O-COCOSDA2024

A Problem with Top-Down Integrated Search

• Manner probability evolution is shown in the 

location around the error: Safra → Stock For

Language model too strong? Information extraction first?

No stops in recognizing “stock”
Ending with “vowel”

Correct attribute detection !! Wrong word recognition !!

Safra

From Blackbox Learning to Explainable AI

• Brute-force score-based image and speech recognition (粗功)

• No detailed analysis (細功): requiring domain knowledge for 

problem solving, not just blind tag-based DNN learning 

• What about today’s top-down ASR?
➢Giving unexpected results: not human-like natural user interfaces (NUIs)

• From black-box to white-box: knowledge-driven modeling for ASR
➢ Automatic speech attribute transcription (Lee, et al, Proc. IEEE, 2013)

• Desperately needed new effort: knowledge-driven Explainable AI

DNN-based 

Traffic Sign 

Recognition

O-COCOSDA20248
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Human-Based Speech Processing

• Human speech recognition (HSR): no ‘strange’ errors

• Learning from spectrogram reading and HSR
➢ Explore speech knowledge hierarchy, from acoustics to pragmatics

➢ Incorporate acoustic and auditory cues in speech

➢ Weigh & combine evidences to form cognitive hypotheses

➢ Verify them until consistent decisions are reached

     Bottom-up knowledge source integration

➢ But also leveraging upon 55 years of data-driven modeling

➢ ASAT: providing a collaborative vehicle

O-COCOSDA2024
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Learning from Speech Science

O-COCOSDA2024

Vast speech literature & ideas yet to be explored in ASR

…

… ..
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Automatic Speech Attribute Transcription
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ASAT (Lee & Siniscalchi 

Proc. IEEE, 2013)
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Detection of Manner of Articulation

O-COCOSDA2024

(Plots generated by 3-NN in Blue and HMM in red)
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Detection of Place of Articulation
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Another Visible Speech: Landmarks

O-COCOSDA2024

RATES FELL ON SHORT TERM TREASURY BILLS (blue curves generated by DNN)
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DNN-based Phone Posteriogram

O-COCOSDA2024
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DNN

• From HMM to DNN models: better accuracies

• Posteriorgram: DNN outputs simulating posteriors
➢ Clear lines indicating high detection probabilities

➢ “that’s fine” or  “sil dh ae s f ay n sil”

Lattice Rescoring for Error Correction

Reduce 30% of word errors in the 30 “worst” utterances

• Penalizing HMM scores with absence of the stop attributes

• Other attribute detectors can function similarly when needed

O-COCOSDA202416
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Suprasegmental Prosody and Duration 

Features for Correction (Future Paper)

O-COCOSDA2024Dr. Chen-Yu Chiang, National Taipei Univ., produced  the figure

Two inconsistencies: (i) the F0 for the segment "ker" is too high with respect to that for the 

preceding segment "ma", and (ii) the "glottal closure" of stop sound in "maker" is too long

Frame 

energy

F0

If the Fed pushes the dollar higher, AND MAKER OF  IT MAY CURB the demand for U.S. exports.

(i)

(ii)

“Stop

Gap”

vs.

“Glottal

Closure”

(i)60 msecs

Maker

18

Language-Universality: American Manner 

Detectors for Error Correction in Mandarin

O-COCOSDA2024Thanks to Dr. Chen-Yu Chiang of Taipei University for the figure

市長, shi4-

zhang3

Frame

a posterior prob. of fricative

Spectrogram 

a posterior prob. of vowel

a posterior prob. of nasal

Correct 

hypothesis

Wrong 

hypothesis

縣長, xian4-

zhang3

(missing 

nasal) in ASR
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Knowledge Integration in Mandarin LVCSR

Manner, break and pitch models all improve Mandarin ASR 

performances progressively & additively (ISCSLP2012)

WER (%) CER (%) SER (%)

Baseline 13.75 10.56 7.79

+Manner 13.45 10.20 7.44

+Break 12.57 9.81 7.13

+M+B 12.43 9.36 6.90

+B+Pitch 12.26 8.93 6.73

+M+B+P 12.24 8.85 6.63
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Attribute Detection Performance

• 21 detectors (ANN, not HMM)

– WSJ0 training (excluding 6% CV)

– Nov92 testing (330 utterances)

– Little context, no lexicon, no syntax

– Nasal: 97.1%

– Dental: 99.1%

– Glottal: 99.7%

– Tense: 90.50%

– Continuant: 89.93%

• DNN: all detection rates > 90% 

(ICASSP2012)
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Multilingual ASR: Current Status

• Recent advances: single large pre-trained models
➢ Whisper, Nemo, etc. plus language-specific fine-tuning

• Technology dimensions
➢ Modeling unit: language-universal vs language–specific, 

such as IPA, characters (CTC), speech attributes (ASAT)

➢ Word modeling based on acoustic modeling units

➢ Language modeling (LM): language-dependent

➢ Training data: resource-rich vs resource-limited settings

➢ Feature: language-universal vs language–specific

• From domain-specific to domain-independent LM
➢ WSJ0 WER: 4% (trigram), 7% (bigram), 70% (0-gram)

O-COCOSDA2024
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Effect of Features on Language Identification

• Our recent study on multilingual ASR (Interspeech2024)

• Multilingual Spoken Words Corpus (MSWC for isolated commands)
➢ 8 in-domain (ID) languages with 500 in-vocabulary (IV) training samples
➢ 3 in-domain  out-of-vocabulary (ID-OOV) languages
➢ 3 lout-of domain (OD) out-of-vocabulary unseen language (UL)
➢ 30 samples in each evaluation set in each language

• Language ID models trained by language-specific data

• Domain adversarial training (DAT) for language-universal as compared to 
conventional feature extraction (FE):  DAT hurts phone models the most

➢ DAT reduces language specificity and greatly degrades ID accuracies

O-COCOSDA2024
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Spoken Keyword Recognition (SKR)

• In-domain (seen languages), in-vocabulary (ID-IV) SKR 
➢ Basechar and BasePhone use language-specific training

➢ Baseattr is language-universal and did not perform as well

• After DAT, DATattr outperforms DATchar and  DATphone

O-COCOSDA2024
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In-Domain Out-of-Vocabulary (ID-OOV) SKR

• Models obtained as before (no retraining, zero-shot transfer)
➢ Basechar degrades greatly (poor character sequence modeling) 

➢ Baseattr & BasePhone are language-consistent and perform better

• After DAT, slight improvements are observed 
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SKR of Unseen Languages (Phone Mismatch)

• OOV in 3 unseen languages: Turkish, Latvian, Lithuanian

• Models obtained as before (no retraining, zero-shot transfer)
➢ Baseattr outperforms Basechar and BasePhone (Basechar is the worst)

• After DAT, Baseattr performs even better (the best so far)

26

SKR with Large Pre-trained Models

• End-to-end (E2E) models: Google, Facebook, Meta, Nvidia, etc.

 Replying on LM for resource-rich languages in multilingual ASR

• Average SKR WER comparisons for 8  seen languages (no LM)

 Large pre-trained models do not do much better after fine-tuning, but 

require much bigger model sizes (95 MB vs. small Whisper of 244 MB)

========================================================

• Average WERs of OOV for 3 of the 8 seen and 3 unseen languages

 With no fine-tuning, large pre-trained models perform much worse

ID-IV (Basephone) Whisper (Fine-tuned) Facebook (Fine-tuned)

13.32% 56.73% (13.54%) 54.39% (xx%)

ID-OOV Whisper (Facebook)

35.02% 77.78% (72.18%)

OD-OOV Whisper (Facebook)

47.88% 78.64% (73.21%)
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Next: Multilingual LVCSR and Bottom-Up 

Keyword Spotting in Extraneous Speech

O-COCOSDA202427
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Conclusion and Future Work

• Knowledge-ignorant modeling for pattern recognition is 

mathematically well-formulated: carrying us a long way so far

• Knowledge-rich modeling leverages on data-driven modeling

➢ From top-down decoding to highly-parallel, bottom-up processing

➢ Information integration within the speech knowledge hierarchy

• Robust information extraction supplements pattern matching 

with/plus signal processing to detect “islands of reliability”

➢ A collaborative community effort: everyone can help

• Final grand challenge: language-universal modeling

➢ Can we train ASR models for all languages once and for all ??

➢ How do we learn from human language acquisition ??

O-COCOSDA2024
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